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Abstract 
 

The study of Mersenne numbers (numbers expressible as 2N � 1) is an important 
topic in number theory.  Thus, the question �what has been discovered about Mersenne 
numbers, what work is now being done, and is there a way to predict what the Nth 
Mersenne prime is?� is investigated here.   
 
 Early work on Mersenne numbers focused on perfect numbers; each Mersenne 
prime corresponds with exactly one even perfect number.  Mathematicians, over the 
millennia, discovered effective methods to determine whether a given Mersenne number 
is composite.  Mersenne numbers with composite exponents are always composite.  
Theorems were proven about Mersenne numbers� potential factors: they must be 
expressible as 2kN + 1 and congruent to ±1, modulo 8.  An incredibly powerful primality 
test for Mersenne numbers was found: the Lucas-Lehmer test.  Unlike probabilistic 
primality tests, a Mersenne number is prime if and only if it passes the Lucas-Lehmer 
test. 
 
 Combined with Fast Fourier Transforms, the Lucas-Lehmer test is ideally suited 
to be performed by binary computers.  Initially, supercomputers haphazardly searched for 
Mersenne primes.  However, the Lucas-Lehmer test also happens to be suited for 
distributed computing.  This, along with the Internet, makes an organized, coordinated 
worldwide search on thousands of personal computers possible: The Great Internet 
Mersenne Prime Search. 
 
 Previous conjectures by Gillies, Wagstaff, and others are investigated here, and 
empirical support is shown for a new conjecture: 
 

¿   M(x) ≈ eγ log2 x � 2
1/eγ   ? 

 
M(x) is the number of primes P ≤ x for which 2P � 1 is prime.  This new 

conjecture may be used to more accurately predict what the Nth Mersenne prime is. 
 
 Despite the amount of knowledge already gathered and ongoing efforts, 
unresolved questions about Mersenne numbers still exist.  There are indications that an 
undiscovered Mersenne prime between 23021377 � 1 and 26972593 � 1 exists.  Clearly, 
Mersenne numbers will remain a topic of interest in number theory for a long time to 
come. 
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Introduction 
From Number Theory to Mersenne Primes 

 
Throughout history, people have been fascinated by the properties of integers.  

Since Pythagoras�s time, these properties have been explored and discovered, and this 
field of mathematics has been named number theory.  A significant part of number theory 
deals with divisibility, factoring, and prime numbers.  Prime numbers, of course, are 
numbers that have no factors except themselves and one.  Primes are more than just 
oddities: they have become extremely important in cryptography, because it is difficult to 
factor a large composite number into two primes.  In fact, for general numbers a few 
hundred decimal digits long, factoring is nearly impossible; this gave rise to the RSA 
cryptosystem.  However, prime numbers do not arise from a specific equation.  There is 
no known formula which, given N, can return the Nth prime number without laboriously 
testing numbers for primality from two onwards, but many results have been discovered 
that describe in a more general way the distribution of primes.  Over two millennia ago, 
Euclid showed that there are infinitely many prime numbers.  Other mathematicians have 
found approximations to the Nth prime number, given N.  There is something intriguing 
about the fact that the size of the Nth prime can be estimated well by the simple formula 
N ln N.  Number theory is filled with simple, beautiful results such as this.  Curious 
mathematicians have explored prime numbers� properties and have named specific types 
of them.  In addition to �general� primes, like 137, there are more specialized types.  For 
example, Sophie Germain primes are primes N for which 2N + 1 is prime.  Pierre de 
Fermat investigated numbers of the form 2(2N) + 1, now called �Fermat numbers�.  For 
values of N from 0 to 4, inclusive, the corresponding Fermat number is prime, and thus 
Fermat conjectured that all Fermat numbers were prime (Ore 74).  However, 2(25) + 1 was 
eventually found to be composite, as well as many other Fermat numbers.  As no more 
Fermat primes have been found, this area has become a dead-end.  The only interesting 
work remaining is factoring very large Fermat numbers and attempting to show that the 
number of Fermat primes is finite.  Yet another type has a similar structure to Fermat 
numbers: numbers of the form 2N � 1 are called Mersenne numbers, and several 
exponents N produce prime Mersenne numbers (Mersenne primes).  Unlike Fermat 
primes, there seems to be an infinite number of Mersenne primes, and hence much work 
has been done with Mersenne numbers.  Thus, a question arises: what has been 
discovered about Mersenne numbers, what work is now being done in this area, and is 
there a way to predict what the Nth Mersenne prime is?  Discoveries about Mersenne 
numbers started over two millennia ago, and with the assistance of powerful electronic 
digital computers and an algorithm about a century old, Mersenne numbers can quickly 
be tested for primality.  In addition, there appears to be a way to predict statistically what 
the Nth Mersenne prime is. 
 

The Mersenne Primes 
 
 To this date, only 38 Mersenne primes have been discovered.  Table 1 lists the 
known Mersenne primes� exponents. 
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TABLE 1 
Mersenne Primes and Related Facts 

Order by 
Size 

Exponent 
in 2N � 1 

Year 
Found 

Discoverer(s) Tool Used in 
Primality Test 

1st 2 Antiquity [Not Applicable] Hand 
2nd 3 Antiquity [Not Applicable] Hand 
3rd 5 Antiquity [Not Applicable] Hand 
4th 7 Antiquity [Not Applicable] Hand 
5th 13 1456 Anonymous Hand 
6th 17 1588 Cataldi Hand 
7th 19 1588 Cataldi Hand 
8th 31 1772 Euler Hand 
9th 61 1883 Pervushin Hand 

10th 89 1911 Powers Hand 
11th 107 1914 Powers Hand 
12th 127 1876 Lucas Hand 
13th 521 1952 Robinson SWAC 
14th 607 1952 Robinson SWAC 
15th 1279 1952 Robinson SWAC 
16th 2203 1952 Robinson SWAC 
17th 2281 1952 Robinson SWAC 
18th 3217 1957 Riesel BESK 
19th 4253 1961 Hurwitz IBM 7090 
20th 4423 1961 Hurwitz IBM 7090 
21st 9689 1963 Gillies ILLIAC II 
22nd 9941 1963 Gillies ILLIAC II 
23rd 11213 1963 Gillies ILLIAC II 
24th 19937 1971 Tuckerman IBM 360/91 
25th 21701 1978 Noll & Nickel Cyber-174 
26th 23209 1979 Noll Cyber-174 
27th 44497 1979 Nelson & Slowinski Cray-1 
28th 86243 1982 Slowinski Cray-1S 
29th 110503 1988 Colquitt & Welsh NEC SX-2 
30th 132049 1983 Slowinski Cray-XMP 
31st 216091 1985 Slowinski Cray-XMP 
32nd 756839 1992 Slowinski & Gage Cray-2 
33rd 859433 1994 Slowinski & Gage Cray-C916 
34th 1257787 1996 Slowinski & Gage Cray-T94 
35th 1398269 1996 Armengaud, Woltman, et al. (GIMPS) Pentium PC 

36th* 2976221 1997 Spence, Woltman, et al. (GIMPS) Pentium PC 
37th* 3021377 1998 Clarkson, Woltman, Kurowski, et al. 

(GIMPS/PrimeNet) 
Pentium PC 

38th? ** 6972593 1999 Hajratwala, Woltman, Kurowski, et al. 
(GIMPS/PrimeNet) 

Pentium PC 

(Williams 336 and http://www.utm.edu/research/primes/mersenne.shtml) 
* All Mersenne numbers with exponents under 3021377 have been tested for primality once, but not all 
have been double-checked.  For the purposes of this paper, it will be assumed that the 36th and 37th largest 
Mersenne primes are 22976221 � 1 and 23021377 � 1, respectively. 
** Not all Mersenne numbers with exponents under 6972593 have been tested for primality once.  For the 
purposes of this paper, 26972593 � 1 will not be considered the 38th Mersenne prime in order of size unless 
otherwise noted. 
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Development through History 
Early History – Euclid 

 
While work today focuses on Mersenne numbers, two millennia ago they were 

merely a footnote in the work done on perfect numbers (numbers whose set of all 
divisors, excluding the number itself, add up to the number itself).  The Pythagorean 
mathematicians, who were fascinated with numbers for numerological and mystical 
reasons, first studied perfect numbers (http://www-history.mcs.st-andrews.ac.uk/history/ 
HistTopics/Prime_numbers.html). The first four perfect numbers, known since antiquity, 
are 6, 28, 496, and 8128.  Euclid proved that when 2N � 1 is prime, 2(N�1)(2N � 1) is a 
(necessarily even) perfect number (Dickson 3).  Thus, every Mersenne prime produces a 
perfect number.  Apparently, Euclid was the first to define �prime number�, and possibly 
the definition arose from this proof (Shanks 3).  However, other mathematicians at the 
time stated things later proven incorrect about perfect numbers.  Nichomachus 
erroneously stated that perfect numbers end alternately (when they are ordered by size) in 
6 and 8, and other mathematicians believed this as well (Dickson 3).  Though the pattern 
of ending digits 6, 8, 6, 8 seen in the first four perfect numbers does not hold, all perfect 
numbers do end in 6 or 8 (Griffin 37), which can be proven using an important fact about 
Mersenne numbers.  Namely, when N is composite, 2N � 1 is composite (Hardy & Wright 
15) (Proof 1 in Appendix III).  This fact is a great advantage in the search for Mersenne 
primes, as the number of exponents that must be considered is significantly reduced when 
only prime exponents must be tested.  With Proof 1, the proof that perfect numbers of the 
form 2(N�1)(2N � 1) end in 6 or 8 follows easily (Proof 2 in Appendix III). 

 
After the Dark Ages – Fermat and Mersenne 

 
Though many incorrect statements were made about perfect numbers after 

Euclid�s time, little else was discovered during the Dark Ages about perfect and 
Mersenne numbers (http://www-history.mcs.st-andrews.ac.uk/history/HistTopics/ 
Prime_numbers.html).  Work on perfect and Mersenne numbers began again around the 
16th century.  Though many thought that 2N � 1 was prime for all prime N, in 1536, 
Hudalricus Regius showed that 211 � 1 = 2047 = 23 · 89 (http://www.utm.edu/research/ 
primes/mersenne.shtml).  In 1603, Pietro Cataldi had proven 213 � 1, 217 � 1, and 219 � 1 
to be prime by the laborious process of trial division (trying every prime under the 
number�s square root as a possible divisor) (Ore 73).  Though Cataldi stated that 223 �1, 
229 � 1, 231 � 1, and 237 � 1 were prime (http://www.utm.edu/research/primes/ 
mersenne.shtml), and was only correct for 231 � 1, he did prove that perfect numbers of 
Euclid�s form end in 6 or 8, as Proof 2 shows (Dickson 10).  Pierre de Fermat 
corresponded (as did other mathematicians) with the French monk Marin Mersenne about 
mathematics.  In a letter to Mersenne written in June 1640, Fermat stated that he had 
proven three propositions: that 2N � 1 is composite when N is composite (Proof 1 shows 
this but may not use Fermat�s exact approach), that 2N � 2 is divisible by 2N when N is 
prime, and that 2N � 1 is only divisible by primes of the form 2kN + 1, where k is an 
arbitrary integer (Dickson 12) (Proof 3 in Appendix III shows the latter). 
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 Proof 3, as with Proof 1, is highly useful in the search for Mersenne primes, as the 
number of possible factors a Mersenne number may have is reduced and trial division is 
made easier.  Though testing a gigantic number like 26972593 � 1 by trial division, even 
with the help of Proof 3, is clearly infeasible, trial division was used to find some small 
Mersenne primes, as Euler did.  Although numbers of the form 2N � 1 had been 
investigated before the 17th century, they are named for Marin Mersenne because he 
discussed them in his work Cogita physico-mathematica and stated conjectures about the 
numbers� occurrence (Ore 71).  One of his most famous conjectures was that 2N � 1 is 
prime for N = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, and 257, and is composite for all other 
integers 2≤N≤257 (http://www.utm.edu/research/primes/mersenne.shtml). Mersenne�s 
conjecture was not completely correct, but his name is still attached to the numbers.  A 
symbol based on Mersenne�s name has also come into use.  Mersenne numbers (of form 
2N � 1) are often represented by MN, and these two notations will be used interchangeably 
here.  Occasionally, M(N) is used to represent 2N � 1, but it also infrequently refers to the 
Nth Mersenne number in order of size.  In this paper, M(x) has a different meaning, which 
will be discussed below. 
 

Additional Factor Restrictions – Euler 
 
 Leonhard Euler, like Fermat, also made important discoveries about Mersenne 
numbers.  Euler was able to further restrict the set of possible divisors of Mersenne 
numbers; possible factors must be congruent to ±1, modulo 8 (Proof 4 in Appendix III). 
 
 In 1752, Euler was unsure of M31�s primality, but in 1771, Euler proved that M31 
is prime, using what he discovered about the structure of the possible factors of Mersenne 
numbers (Williams 38).  He did this by systematically testing prime numbers of the form 
248N + 1 and 248N + 63 below 46339 as possible factors of M31 (Dickson 19).  While 
knowledge about Mersenne primes was clearly increasing (the 7th Mersenne prime, M19, 
had been discovered almost two centuries before Euler found the 8th), it quickly becomes 
infeasible to primality test larger Mersenne numbers using trial division.  Though there 
are only 84 prime numbers of the form 248N + 1 or 248N + 63 below 46339, as 
compared to the 4791 odd primes of general form below 46339 (which made Euler�s 
work much easier), even the reduced set of possible factors grows too large as MN 
increases. 
 

Besides the further factor limitations, Euler also proved the converse to Euclid�s 
theorem that every Mersenne prime produces an even perfect number: all even perfect 
numbers are produced by Mersenne primes (Proof 5 in Appendix III).  After Euler proved 
the converse of Euclid�s theorem, the search for perfect numbers became completely 
equivalent to the search for Mersenne primes (it is unknown if odd perfect numbers 
exist).  In Euclid�s time, perfect numbers were heavily investigated and Mersenne 
numbers were largely disregarded, but in modern times the situation has reversed. 

 
The Test – Lucas 

 
Édouard Lucas made an important discovery in 1876 concerning Mersenne 
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numbers, and in the process set a record that may never be broken again.  While studying 
Fibonacci numbers, he discovered the following theorem: 

 
Theorem 1: Let UN be the Nth Fibonacci number (U1 = U2 = 1, UK+1 = UK + UK-1).  

If N ≡ ±3 (mod 10) and N is a proper (now called primitive) divisor of UN+1, then N is 
prime.  If N ≡ ±1 (mod 10) and N is a proper divisor of UN-1, then N is prime (Williams 
56). 

 
While Lucas later provided incorrect proofs of this theorem, Carmichael 

eventually proved the theorem in 1913 (Williams 57).  In an 1876 communication, Lucas 
stated, along with the previous theorem, �Furthermore, it is important to remark that 
[Theorem 1] allows us to determine whether a number is prime� without making the use 
of a table of prime numbers.  It is with the aid of this theorem that I think I have proved 
that the number A = 2127 � 1 is prime�  Indeed, the number A is of the form 10P � 3 and 
I have verified that UK is never divisible by A for K = 2N except for N = 127� (Williams 
57).  Before Lucas�s discovery, there was no way to test any number of general form, 
much less Mersenne numbers, for primality using many trial divisions (Williams 57).  
The exact manner in which Lucas arrived at his discovery is uncertain, but he may have 
been aware of a more specific result than Theorem 1 (Proof 6 in Appendix III). 

 
Proof 6 reveals that 2127 � 1 can be proven prime by showing that 2127 � 1 divides 

V2126 (Williams 58).  The following small proof, from Hugh C. Williams, shows how 
Lucas actually computed this.  Let RK = V2K.  It is simple to show: V2N = (VN)² � 2(�1)N.  
Thus R0 = 1, R1 = 3, and RK+1 = (RK)² � 2  (for K≥1).  Hence Lucas had to demonstrate 
that R126 ≡ 0, modulo 2127 � 1 (Williams 58).  Interestingly, to do this computation, Lucas 
did not use written arithmetic; he moved counters on a 127 x 127 chessboard (Williams 
60).  Though this method did not leave any written work, making errors difficult to 
detect, Lucas said that with training one could become quick at manipulating the counters 
to do the computation.  Nevertheless, it is estimated that Lucas spent 170 to 300 hours 
proving M127�s primality, which may be why he performed the computation only once in 
his lifetime (Williams 60). 

 
Lucas proved M127�s primality in 1876, and while other Mersenne primes smaller 

than it were discovered later, the next larger Mersenne prime was discovered in 1952 
with computer assistance.  Because untested Mersenne numbers are now much too large 
to test by hand (and testing general numbers is much slower than testing Mersenne 
numbers) the 12th Mersenne prime M127 will, in all likelihood, stand forever as the largest 
number to have been proven prime using an entirely manual method. 

 
The Revised Test and Binary Computers 

 
After Lucas originated the theory, D. H. Lehmer simplified the primality test 

Lucas used, producing the Lucas-Lehmer (LL) test. 
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Theorem 2 (the Lucas-Lehmer test): 2N � 1 is prime if and only if SN�2 ≡ 0 (mod 
2N � 1), where S0 = 4 and SK+1 = (SK)² � 2 (http://www.utm.edu/research/primes/ 
notes/proofs/LucasLehmer.html) 

 
The Lucas-Lehmer test happens to be ideally suited for binary computers, as the 

computation of SK does not involve division (which binary computers do slowly) and can 
be done using only multiplication and addition (which binary computers do quickly).  As 
a bonus, taking each SK modulo MN is ridiculously easy in binary because MN is a string 
of 1s in binary.  The N least significant bits of SK are removed and stored as a new 
number (call it A).  The remaining bits of SK are shifted down, so that the N+1 bit of the 
original SK is now the least significant bit.  Call this new number B.  A and B are added 
(call it C).  If C > MN, the process is repeated until it is under MN.  If C = MN then C is set 
to 0, and finally C is returned.  As the LL test is done modulo MN, the SK that must be 
stored stays small throughout the test.  Unfortunately, the sequence of S values must be 
recomputed for each exponent N that is tested.  If the modulo MN operation is not 
performed at every cycle of computing SK, the estimated number of elementary particles 
in the observable universe soon becomes insufficient to store the value of S 
(http://www.tasam.com/~lrwiman/faq-mers). 

 
Ongoing Work 

The FFT Speedup and the Era of Supercomputers 
 
Recently, the use of Fast Fourier Transformations (FFTs) has sped up the 

computation of the Lucas-Lehmer test.  Using FFTs, the squaring operation done while 
calculating SK is quicker, and the time taken to square larger numbers does not grow as 
quickly with the size of the number as for the �standard� multiplication process.  In fact, 
multiplication of two N bit numbers can be done, via FFT, in O(N log N log log N) 
operations, while �ordinary� multiplication takes O(N²) operations (Williams 331).  The 
FFT also easily performs the modulo MN operation.  Although LL testing has superseded 
factoring as a method of primality testing Mersenne numbers, the advances made 
centuries ago in factoring are still utilized today.  While Mersenne numbers are not 
completely factorized, some factoring is done to eliminate Mersenne numbers with small 
factors.  This can save time as compared to a full LL test.  Of course, if no small factors 
are found in a Mersenne number, a LL test must be performed to test for primality. 

 
Very large Mersenne primes have been found by using the Lucas-Lehmer test in 

combination with quick factoring techniques.  In 1914, manual methods, for the last time, 
found a Mersenne prime.  In 1952, Raphael Robinson wrote a program for LL testing on 
the Standards Western Automatic Computer, and it ran the first time he tried it on 
January 30.  On that day, M521 and M607 were discovered.  Incredibly, on June 25, 
October 7, and October 9 of the same year, M1279, M2203, and M22812281 were respectively 
discovered (http://www.utm.edu/research/primes/notes/by_year.html).  More Mersenne 
prime discoveries followed as supercomputers increased in speed.  In 1961, A. Hurwitz 
found two Mersenne primes using the IBM 7090 computer.  Because of the way the 
printed output was stacked, he learned of M4423 seconds before M4253 
(http://www.utm.edu/research/primes/by_year.html).  However, the increasing speed of 
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supercomputers created a problem.  No organized search for Mersenne primes existed, 
and this led to confusion among researchers as to which Mersenne number exponents had 
been tested (Williams 337).  In fact, in 1988 Colquitt and Welsh found M110503, which 
had been overlooked between the previous discoveries of M86243 and M132049 (Williams 
336-337).  The advent of networking has now provided a solution. 

 
Distributed Computing and the Era of Personal Computers 

 
In January 1996, George Woltman started the Great Internet Mersenne Prime 

Search, GIMPS (http://www.mersenne.org/prime.htm). The GIMPS is classified as 
�distributed computing�, and does not utilize a massively parallel supercomputer.  
Woltman wrote a program, Prime95, that runs Lucas-Lehmer tests (using Crandall and 
Fagin�s DWT algorithm to speed up multiplication) on personal computers (PCs) and 
placed it on the Internet.  Anyone could download the program and run it on a PC.  
Initially, Woltman personally assigned Mersenne number exponents to each participant 
and gathered the results via electronic mail.  As the project grew (it has approximately 
15,000 participants at this time), it became increasingly harder for Woltman to handle the 
electronic mail.  Luckily, by 1997, Scott Kurowski had organized PrimeNet, a central 
Internet-based server that automatically assigns �work� for the participants� computers to 
do and collects results.  In 1998, this was made an official part of Prime95 
(http://www.mersenne.org/prime.htm).  The coordinated project has solved the problem 
inherent in supercomputer searches; at this time, GIMPS has tested and double-checked 
in an orderly fashion all Mersenne numbers with exponents below 2,032,200, and has 
tested all exponents below 4,159,700 at least once.  In fact, the GIMPS has found all four 
most recently discovered Mersenne primes, second only to Robinson�s five discoveries 
(Slowinski has been in different teams) (http://www.mersenne.org/6972593.htm).  Just as 
the LL test is suited to binary computers, searching for Mersenne primes is suited for 
distributed computing.  There are many exponents that must be tested, so a PC can take a 
few at a time.  The central server needs only to transmit the exponents to each PC and to 
collect the last few bits of the final Lucas-Lehmer S value, the residue (generally, 64 bits 
is enough to ensure that two residues are identical for double-checking).  Each PC, once 
assigned work to do, is kept busy for weeks.  Therefore, the data that must be sent over 
the Internet is minimal, and the numbers can be encoded as plain text.  While many 
distributed computing projects now exist, GIMPS is the only search for Mersenne primes.  
The �virtual machine� produced by over 26,000 PCs working together executes over 
950,000,000,000 floating point operations per second, and the project is growing at a 
steady rate as both new participants join and existing participants upgrade their personal 
computers (http://entropia.com/primenet/).  See Appendix IV for a list of GIMPS�s 
achievements.  See Appendix V for a history of PrimeNet. 

 
A New Conjecture 

Previous Mersenne Conjectures – Gillies and Wagstaff 
 
A systematic search for Mersenne primes is very useful, but by its nature it does 

not utilize any predictions as to what the next Mersenne prime might be.  After all, the 
Nth general prime can be predicted, given N.  Over time, mathematicians have formulated 
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conjectures about Mersenne primes� distribution.  Richard K. Guy�s definition of M(x) is 
used here: M(x) is the number of primes P ≤ x for which 2P � 1 is prime (Guy 8).  Note 
that this is not S. Wagstaff�s definition, which is the number of Mersenne primes ≤ x 
(Wagstaff 388).  In 1964, D. B. Gillies conjectured that: 

 
Conjecture 1: 

¿   M(x) ~ c ln x   ? 
 

Where c is a constant (Guy 8).  Wagstaff, H.W. Lenstra, and Carl Pomerance 
went further and conjectured that: 

 
Conjecture 2: 

¿   M(x) ~ eγ log2 x   ? 
 

Where γ is Euler�s constant (Guy 8).  Wagstaff noted that this implies that eγ 
Mersenne primes exist with exponent P between x and 2x (Wagstaff 388).  Ideally, for 
prime MX, a conjectured equation for M(x) should return an integer equal to the 
Mersenne prime�s order by size.  For example, M(1398269) should equal 35, because 
there are 35 primes P ≤ 1398269 for which MP is prime (i.e. M1398269 is the 35th Mersenne 
prime).  Conjecture 2 returns 36.361.  This suggests that a way to predict M(x) more 
accurately exists. 

 
The New Empirical Evidence 

 
Using the first 37 Mersenne primes, the author performed a series of calculations 

that suggests a new conjecture.  (See note about M6972593 under Table 1.)  Appendix I 
contains the relevant data used to create the following graphs.  The Mersenne primes, in a 
list P, were numbered according to size, producing the list N.  Then, log2 P w.r.t. (with 
respect to) N was plotted, producing Graph 1. 
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GRAPH 1 
Log2 P With Respect to N 

 
 
 
Chris Caldwell said of a similar graph: �One can not miss that this graph is 

amazingly linear� (http://www.utm.edu/research/primes/notes/faq/NextMersenne.html).  
This suggests conjectures by itself, such as the one that Gillies made. 

 
Then, eγ log2 P w.r.t. N was plotted in Graph 2, along with the line y = x.  This 

line represents Conjecture 2; if all Mersenne prime exponents followed Conjecture 2 
precisely, eγ log2 (exponent) would equal 1, 2, 3� for each exponent in turn (Conjecture 
2 relates N and P).  Hence, Graph 2 is a measure of how well Conjecture 2 applies to the 
actual Mersenne prime exponents. 

 
 
 
 
 
 
 
 
 
 



 10

 
 
 
 
 
 
 
 

GRAPH 2 
eγ log2 P With Respect to N, and the Line y = x 

 
 
 
It is apparent from Graph 2 that Conjecture 2 seems slightly strange.  For all but 

one given N, Conjecture 2 underestimates the actual value of eγ log2 P. 
 
Therefore, eγ log2 P � N w.r.t. N was plotted in Graph 3, along with a linear 

regression line of the data.  This graph represents how inaccurate Conjecture 2 is when 
applied to real Mersenne prime exponents.  If Conjecture 2 predicted that M(3021377) = 
37, then eγ log2 3021377 � 37 would equal 0. Graph 3 clearly shows that it does not. 
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GRAPH 3 
eγ log2 P � N With Respect to N, and the Resulting Linear Regression Line 

y = .00477x + 1.462 

 
 
 
Graph 3 is very strange.  Save for one exponent, all of these calculated �errors� 

were positive, and often disturbingly large.  The linear regression line y = .00477x + 
1.462 was found (see Appendix II for all regression calculations).  Apparently there is a 
consistent error (1.462) in Conjecture 2 that varies little as the Mersenne primes grow 
(hence the coefficient .00477).  The author went back and applied a correction to Graph 
2, which better fit y = x.  eγ log2 P � 1.462 w.r.t. N was plotted in Graph 4, along with the 
line y = x. 
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GRAPH 4 
eγ log2 P � 1.462 With Respect to N, and the Line y = x 

 
 
 
Graph 4 with the �correction� of �1.462 appears to fit the actual data better than 

the uncorrected Graph 2.  eγ log2 P � 1.462 � N w.r.t. N was plotted in Graph 5, along 
with a linear regression line. 

 
 
 
 
 
 
 
 
 
 
 
 



 13

GRAPH 5 
eγ log2 P � 1.462 � N With Respect to N, and the Resulting Linear Regression 

Line y = .00477x 

 
 
 
The calculated �errors� in Graph 5 are more evenly distributed around 0. 
  

The New Conjecture 
 
These graphs provide empirical support for a new conjecture.  At the very least: 
 

Conjecture 3 (Weak Form): 
¿   M(x) ~ eγ log2 x + C   ? 

 
Of course, an appropriate C must be found.  The first 37 Mersenne primes suggest 

that C = �1.462.  Perhaps C is actually equal to �1.5.  However, Manfred Schroeder noted 
that Conjecture 2 implies that the geometric mean of two successive Mersenne prime 
exponents is 2

1/eγ = 1.47576� (Schroeder 31).  Schroeder remarks that this may have led 
to the Erhardt Conjecture that the average ratio of successive exponents is 1.5 (Schroeder 
31).  Interestingly, the aforementioned 1.462 is extremely close to 2

1/eγ.  Thus, the author 
was led to conjecture a value for C. 

 
Conjecture 4 (Strong Form): 
¿   M(x) ~ eγ log2 x � 2

1/eγ   ? 
 

It should be noted that these results do not change the validity of Conjecture 2, as 
it is an asymptotic estimate of M(x), which is not affected by the addition of a constant.  
However, the empirical evidence indicates that Conjecture 4 is more useful in predicting 
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the Nth Mersenne prime.  In fact, Conjecture 4 may be a good approximation of M(x), 
rather than just an asymptotic estimate. 

 
Conjecture 5 (Approximation Form): 

¿   M(x) ≈ eγ log2 x � 2
1/eγ   ? 

 
Conjecture 5 may be used to predict the Nth Mersenne prime MP, given N. 
 

M(P) ≈ N 
eγ log2 P � 2

1/eγ ≈ N 
eγ log2 P ≈ N + 2

1/eγ 
log2 P ≈ (N + 2

1/eγ)/eγ 

P ≈ 2(N + 2
1/eγ)/eγ 

 
 Using this, one may predict the exponents of undiscovered Mersenne primes.  A 
short selection of predictions: 
 

TABLE 2 
Expected Values for Exponents of the Nth Mersenne Prime, Calculated 

From Conjecture 5 
N (In Order of Size) Exponent P in 2P � 1 

38 4,699,385 
39 6,935,171 
40 10,234,658 
41 15,103,913 
42 22,289,772 
43 32,894,385 
44 48,544,264 
45 71,639,751 
50 501,458,270 
55 3,510,067,986 
60 24,569,496,568 
65 171,979,620,925 

 Note: Commas are used in only this table to enhance the readability of large numbers. 
 
 It should be noted that at one time, it was known to the general public that a 
Mersenne prime with exponent P between 6 and 7 million had been found, while the 
exponent�s exact identity remained unknown.  The author predicted from Conjecture 5 
that this exponent was near 6.9 million, which turned out to be remarkably close (it was 
6972593).  However, Conjecture 5 forced the prediction of an undiscovered Mersenne 
prime between M3021377 and M6972593.  This, along with the fact that not all Mersenne 
primes in that range have been tested for primality, is the reason why M6972593 has not 
been considered here. 
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Conclusion 
From the Past to the Future 

 
Just five centuries ago, it was still thought that 2N � 1 was prime for all prime N.  

In this short period of time (as compared with all of history), mathematics has realized 
that very few Mersenne numbers are prime, and has devised powerful methods for 
searching for these rarities.  Tremendous numbers of potential factors may be discarded 
without worry, thanks to the work of mathematicians such as Fermat and Euler.  Work in 
the 19th century led to the incredibly fast Lucas-Lehmer primality test for Mersenne 
numbers, which happens to be optimally suited for the binary computers that people are 
now fond of using.  In fact, the LL test is easily distributed to thousands of personal 
computers.  With the LL test and the Internet�s help, the search for Mersenne primes is 
now more comprehensive and organized than haphazard supercomputer searches have 
been in the past.  Recently, conjectures by Gillies, Wagstaff, et al. have indicated that 
there may be an underlying pattern to the Mersenne primes� distribution.  However, the 
field of Mersenne numbers is far from being completely explored.  There are still 
unproven conjectures and open problems, some of which have existed for millennia.  
Questions such as �Is the number of Mersenne primes infinite?�, �If P is prime, is 2P � 1 
always squarefree?�, and even �Are there an infinite number of composite Mersenne 
numbers with prime exponents?� remain unresolved.  Mathematicians are currently 
seeking proofs of the various conjectures regarding Mersenne primes.  It is unknown 
whether there are heuristic (rather than simply empirical) arguments that support 
Conjectures 4 and 5.  There may even be an undiscovered Mersenne prime between 
M3021377 and M6972593.  It would be only the fourth missing Mersenne prime ever 
recovered, and would provide further support for the author�s conjecture. 
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Appendix I 
Data Used in Graphs 

 
TABLE 3 

Data Used For All Graphs, Including List of Exponents P for Which MP is Prime in 
Order of Size 

N (Rank of 
P by Size) 

P (Exponent 
in 2P � 1) 

Log2 P eγ log2 P eγ log2 P � N eγ log2 P � 1.462 eγ log2 P � 1.462 � N 

1 2 1.000 1.781 0.781 0.319 –0.681 
2 3 1.585 2.823 0.823 1.361 –0.639 
3 5 2.322 4.136 1.136 2.674 –0.326 
4 7 2.807 5.000 1.000 3.538 –0.462 
5 13 3.700 6.591 1.591 5.129 0.129 
6 17 4.087 7.280 1.280 5.818 –0.182 
7 19 4.248 7.566 0.566 6.104 –0.896 
8 31 4.954 8.824 0.824 7.362 –0.638 
9 61 5.931 10.563 1.563 9.101 0.101 

10 89 6.476 11.534 1.534 10.072 0.072 
11 107 6.741 12.007 1.007 10.545 –0.455 
12 127 6.989 12.447 0.447 10.985 –1.015 
13 521 9.025 16.074 3.074 14.612 1.612 
14 607 9.246 16.467 2.467 15.005 1.005 
15 1279 10.321 18.382 3.382 16.920 1.920 
16 2203 11.105 19.779 3.779 18.317 2.317 
17 2281 11.155 19.869 2.869 18.407 1.407 
18 3217 11.652 20.752 2.752 19.290 1.290 
19 4253 12.054 21.470 2.470 20.008 1.008 
20 4423 12.111 21.570 1.570 20.108 0.108 
21 9689 13.242 23.585 2.585 22.123 1.123 
22 9941 13.279 23.651 1.651 22.189 0.189 
23 11213 13.453 23.961 0.961 22.499 –0.501 
24 19937 14.283 25.439 1.439 23.977 –0.023 
25 21701 14.405 25.657 0.657 24.195 –0.805 
26 23209 14.502 25.830 –0.170 24.368 –1.632 
27 44497 15.441 27.502 0.502 26.040 –0.960 
28 86243 16.396 29.203 1.203 27.741 –0.259 
39 110503 16.754 29.840 0.840 28.378 –0.622 
30 132049 17.011 30.297 0.297 28.835 –1.165 
31 216091 17.721 31.563 0.563 30.101 –0.899 
32 756839 19.530 34.784 2.784 33.322 1.322 
33 859433 19.713 35.110 2.110 33.648 0.648 
34 1257787 20.262 36.089 2.089 34.627 0.627 
35 1398269 20.415 36.361 1.361 34.899 –0.101 
36 2976221 21.505 38.302 2.302 36.840 0.840 
37 3021377 21.527 38.341 1.341 36.879 –0.121 
Note: Bold entries are used in this table to clearly set apart negative numbers. 
Here and in all other appearances, γ is Euler�s gamma (.5772156649�) and e is the base of natural 
logarithms (2.718281828�) 
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Appendix II 
Linear Regression Line Calculations 

 
 From information in the CRC Standard Mathematical Tables and Formulae, 30th 
edition, if X and Y are two lists of data which each contain Q elements, then the linear 
regression line y = Ax + B can be calculated if A and B are found. 
  
A = (Q · ∑XY � ∑X · ∑Y) / (Q · ∑X² � (∑X)²) 
B = (∑X² · ∑Y � ∑X · ∑XY) / (Q · ∑X² � (∑X)²) 
 
For the first calculation, Q = 37, X = N, and Y = eγ log2 P � N.  
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TABLE 4 
Data Used in Linear Regression Line Calculation for N and eγ log2 P � N in Graph 3 

X Y X² XY 
1 0.781 1 0.781 
2 0.823 4 1.646 
3 1.136 9 3.408 
4 1.000 16 4.000 
5 1.591 25 7.955 
6 1.280 36 7.680 
7 0.566 49 3.962 
8 0.824 64 6.592 
9 1.563 81 14.067 
10 1.534 100 15.340 
11 1.007 121 11.077 
12 0.447 144 5.364 
13 3.074 169 39.962 
14 2.467 196 34.538 
15 3.382 225 50.730 
16 3.779 256 60.464 
17 2.869 289 48.773 
18 2.752 324 49.536 
19 2.470 361 46.930 
20 1.570 400 31.400 
21 2.585 441 54.285 
22 1.651 484 36.322 
23 0.961 529 22.103 
24 1.439 576 34.536 
25 0.657 625 16.425 
26 �0.170 676 �4.420 
27 0.502 729 13.554 
28 1.203 784 33.684 
39 0.840 841 24.360 
30 0.297 900 8.910 
31 0.563 961 17.453 
32 2.784 1024 89.088 
33 2.110 1089 69.630 
34 2.089 1156 71.026 
35 1.361 1225 47.635 
36 2.302 1296 82.872 
37 1.341 1369 49.617 
∑X ∑Y ∑X² ∑XY 
703 57.430 17575 1111.285 
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Hence, for Graph 3: 
 
A = (37 · 1111.285 � 703 · 57.430) / (37 · 17575 � 703²) = .00477 
B = (17575 · 57.430 � 703 · 1111.285) / (37 · 17575 � 703²) = 1.462 
 
The linear regression line between N and eγ log2 P � N is thus y = .00477x + 1.462. 
 
For the second calculation, Q = 37, X = N, and Y = eγ log2 P � 1.462 � N. 
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TABLE 5 
Data Used in Linear Regression Line Calculation for N and eγ log2 P � 1.462 � N in 

Graph 5 
X Y X² XY 
1 �0.681 1 �0.681 
2 �0.639 4 �1.278 
3 �0.326 9 �0.978 
4 �0.462 16 �1.848 
5 0.129 25 0.645 
6 �0.182 36 �1.092 
7 �0.896 49 �6.272 
8 �0.638 64 �5.104 
9 0.101 81 0.909 
10 0.072 100 0.720 
11 �0.455 121 �5.005 
12 �1.015 144 �12.180 
13 1.612 169 20.956 
14 1.005 196 14.070 
15 1.920 225 28.800 
16 2.317 256 37.072 
17 1.407 289 23.919 
18 1.290 324 23.220 
19 1.008 361 19.152 
20 0.108 400 2.160 
21 1.123 441 23.583 
22 0.189 484 4.158 
23 �0.501 529 �11.523 
24 �0.023 576 �0.552 
25 �0.805 625 �20.125 
26 �1.632 676 �42.432 
27 �0.960 729 �25.920 
28 �0.259 784 �7.252 
39 �0.622 841 �18.038 
30 �1.165 900 �34.950 
31 �0.899 961 �27.869 
32 1.322 1024 42.304 
33 0.648 1089 21.384 
34 0.627 1156 21.318 
35 �0.101 1225 �3.535 
36 0.840 1296 30.24 
37 �0.121 1369 �4.477 
∑X ∑Y ∑X² ∑XY 
703 3.336 17575 83.499 
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Hence, for Graph 5: 
 
A = (37 · 83.499 � 703 · 3.336) / (37 · 17575 � 703²) = .00477 
B = (17575 · 3.336 � 703 · 83.499) / (37 · 17575 � 703²) = 0.000 
 
The linear regression line between N and eγ log2 P � 1.462 � N is thus y = .00477x. 
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Appendix III 
Proofs 

 
Proof 1: Numbers of the form 2N � 1 with composite N are composite (Hardy & 

Wright 15). 
 
N is composite and hence may be factored into two integers R, S (both greater 

than 1) such that R · S = N.  If 2RS � 1 is divisible by 2R � 1, then 2RS � 1 modulo 2R � 1 
will be congruent to 0, because of the basic laws of modular arithmetic.  Thus, we wish to 
verify that the following equation does, indeed, hold: 

 
2RS � 1 ≡ 0  (mod 2R � 1) 

2RS ≡ 1  (mod 2R � 1) 
 

Because R and S are both integers greater than 1, the last equation is simply: 
 

2R ·  2R · 2R · � · 2R ·  2R ≡ 1  (mod 2R � 1) 
 

2R, of course, appears on the previous equation�s left-hand-side S number of 
times.  However, 2R taken modulo 2R � 1 is 1.  Obviously: 

 
1 · 1 · 1 · � · 1 · 1 ≡ 1  (mod 2R � 1) 

 
This equation is true; hence 2RS � 1 is divisible by 2R � 1.  QED 

 
Proof 2: All perfect numbers of the form 2(N�1)(2N � 1) are congruent to 6 or 8 

modulo 10 (Griffin 37). 
 
Numbers of the form 2(N�1) as N increases by 1, when taken modulo 10, give rise 

to the pattern 2, 4, 8, 6, 2, 4, 8, 6�.  (Each number in the pattern, when doubled modulo 
10, gives rise to the next.)  Similarly, numbers of the form 2N � 1 as N increases by 1, 
when taken modulo 10, give rise to the pattern 3, 7, 5, 1, 3, 7, 5, 1�.  Because these 
patterns have the same period, for the same N, 2(N�1)(2N � 1) modulo 10 can only take the 
values 2 · 3, 4 · 7, 8 ·5, or 6 · 1.  Since the period is an even number (4), for odd N, the 
number 2(N�1) · (2N � 1) modulo 10 can only be 4 · 7 or 6 · 1.  Thus, for Mersenne primes, 
which always have a prime exponent N in 2N � 1, the corresponding perfect number is 
congruent to 8 or 6 modulo 10 because all primes are either odd or 2.  For 2, it may be 
verified by hand that 2(2�1)(22 � 1) is 6.  QED 
 

Proof 3: Numbers of the form 2N � 1 are only divisible by numbers of the form 
2kN + 1, where k is an arbitrary integer (Shanks 19). 
 
 If Q divides 2N � 1, then 2N ≡ 1 (mod Q) and the order of 2 (mod Q) divides the 
prime N, so it must be N.  By Fermat�s Little Theorem the order of 2 also divides Q � 1, 
so Q � 1 = 2kN.  Hence, Q = 2kN + 1 (http://www.utm.edu/research/primes/notes/proofs/ 
MerDiv.html).  QED 
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Proof 4: Numbers of the form 2N � 1 are only divisible by numbers congruent to 1 

or 7, modulo 8 (Shanks 26). 
 
 From Proof 3, if Q divides 2N � 1, Q = 2kN + 1, where k is an arbitrary integer.  
Thus, Q � 1 = 2kN.  Hence: 
 

2(Q-1)/2 ≡ 2kN ≡ 1 (mod Q) 
 

 Thus, 2 is a quadratic residue mod Q, and it follows that Q ≡ ±1 (mod 8) 
(http://www.utm.edu/research/primes/notes/proofs/MerDiv.html).  QED 
 

Proof 5: All even perfect numbers are of the form 2(N�1)(2N � 1), where 2N � 1 is 
prime (Griffin 36). 

 
Assume that M is a perfect number of the form 2KQ, where Q is odd; hence M is 

even.  By letting S represent the sum of all the divisors of Q except Q itself, the following 
equation holds: 

 
2K+1Q = (2K+1 � 1)(Q + S) 

 
However, 2K+1 � 1 is odd, and hence 2K+1 divides Q + S.  Thus, 
 

Q + S = 2K+1N 
 

Substituting this into the first equation: 
 

Q = (2K+1 � 1)N 
 

Therefore, N is a divisor of Q.  By subtracting Q from Q + S, it is apparent that S 
= N.  Now, suppose that S = N = Q.  Then the preceding equation becomes simplified: 

 
Q = (2K+1 � 1)N 
Q = (2K+1 � 1)Q 

1 = 2K+1 � 1 
2 = 2K+1 

 
Therefore, K = 0 and hence the �even� perfect number M (of the form 2KQ, where 

is odd) is not even.  However, if it is supposed that N is a divisor of Q that is not Q and 
not 1, then N = S is at least the sum of the divisors N and 1.  However, it is impossible 
that N ≥ N + 1, so N = 1 and the only divisors of Q are Q and 1.  Therefore, Q is a prime 
number, and since Q = 2K+1 � 1, the exponent K + 1 is a prime number (from Proof 1).  
Hence, every even perfect number is of the form 2(N�1)(2N � 1), in which both 2N � 1 and 
N are prime (Griffin 36).  QED 
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Proof 6: Let VN = U2N / UN.  Let P be an odd prime and suppose P divides V2N.  
Therefore P ≡ ±1 (mod 2N+1) (Williams 58). 

 
Since P divides V2N, by Theorem 1, P does not divide U2N.  Hence, P divides 

U2N+1 but P does not divide U2M for M ≤ N.  Thus, P is a proper divisor of U2N+1 
(Williams 58).  QED 
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Appendix IV 
Great Internet Mersenne Prime Search Milestones 

 
Current Search Status: 

 
All exponents below 2,032,200 have been tested and double-checked.  
All exponents below 4,159,700 have been tested at least once. 
Exponents left until M2976221 is proven to be the 36th Mersenne prime: 880  
Exponents left until M3021377 is proven to be the 37th Mersenne prime: 968 
Exponents below 6,972,593 not yet tested at least once: 4691 
 

GIMPS, GIMPS/PrimeNet Milestones: 
 
October 16, 1999:  All exponents less than 2,000,000 double-checked.  
August 19, 1999:  All exponents less than 4,000,000 tested at least once.  
June 1, 1999:   Prime M6972593 is discovered. 
December 26, 1998:  All Mersenne numbers less than a million digits tested at least 

once. 
December 18, 1998:  Double-checking proves M1398269 is the 35th Mersenne prime.  
September 26, 1998:  All exponents below 3,021,377 tested at least once.  
September 19, 1998:  All exponents below 2,976,221 tested at least once.  
March 29, 1998:  Double-checking proves M1257787 is the 34th Mersenne prime.  
March 5, 1998:  All exponents below 2,000,000 tested at least once.  
January 27, 1998:  Prime M3021377 is discovered.  
January 1998:  PrimeNet begins official operation. 
October 30, 1997:  All exponents below 1,000,000 double-checked.  
October 11, 1997:  All exponents below 1,398,269 tested at least once.  
August 30, 1997:  Double-checking proves M756839 and M859433 are the 32nd and 33rd 

Mersenne primes, respectively. 
August 28, 1997:  All exponents below 1,257,787 tested at least once.  
August 24, 1997:  Prime M2976221 is discovered. 
May 26, 1997:  All exponents below 1,000,000 tested at least once.  
March 28, 1997:  All exponents below 859,433 tested at least once. 
March 1997:  PrimeNet begins operation, unofficially. 
January 15, 1997:  All exponents below 756,839 tested at least once.  
November 13, 1996: Prime M1398269 is discovered. 
Third quarter, 1996: Double-checking proves M216091 is the 31st Mersenne prime.  
 
(http://www.mersenne.org/status.htm) 
 
Note: Mersenne prime discoveries are highlighted in bold, while double-checking 
accomplishments are italicized. 
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Appendix V 
History of PrimeNet 

 
 Thanks to Scott Kurowski who graciously provided this history of PrimeNet. 

 
Timeline: 
 
* March 1997 
Entropia.com selects GIMPS for candidate project; PrimeNet 1.0 prototype built from 
Duncan Booth's modifications of the MSDN example RPC server implementation.  Used 
built-in hooks in Prime95 v14 APIs for a primenet.dll to get work and return results 
messages.  At this time, George Woltman was not involved. 
 
* April-June 1997 
Primenet.dll is modified to provide the equivalent of prime.spl and worktodo.ini support.  
PrimeNet 2.0 is rewritten, tested with 16 machines, and put onto Entropia.com web site to 
cultivate testers.  By late April, PrimeNet 2.4 started to get used by GIMPS folks around 
the Internet on their own LANs.  A lot of good feedback (credited on the entropia.com 
website), fixes and features turned it into version 2.6.  More than 100 GIMPS users ran 
their own local PrimeNet servers.  The old web site for this is still at: 
 
 http://entropia.com/primenet/original-primenet.html 
 http://entropia.com/primenet/userguide.html 
 http://entropia.com/primenet/installing.html 
 http://entropia.com/primenet/tipsnhelp.html 
 http://entropia.com/primenet/challenge.html 
 
* July 1997 
PrimeNet 2.6 was strong enough for an Internet trial using a P166 server.  Some 200 
machines from several of the top LAN users of the 2.6 version of the server, most notably 
Intershop Communications, who later became 'netconx' account.  2.6 didn't support user 
accounts, so all the results were submitted under the userid 'challenge' to GIMPS (to this 
day, Entropia.com owns this first account ID). George Woltman was now ready to work 
with us in a concentrated effort to support GIMPS on the Internet. 
 
* August-September 1997 
Work continued to add accounting support to the new 2.8 server.  Scott Kurowski started 
designing PrimeNet 3.0 and George started designing Prime95 v15.  Unlike v14, v15 
integrated a full suite of basic PrimeNet APIs.  Support for the public version of 
PrimeNet 2.6 continued. 
 
* October-November 1997 
Testing of PrimeNet 2.8 was underway.  In November just before Thanksgiving, 
PrimeNet 2.8 replaced the 2.6 server on the Internet, taking over the extant 200+ 
machines running v14, which had grown to about 500 computers.  This is why 
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PrimeNet's statistics charts start on 23 November.  Work on PrimeNet 3.0 and Prime95 
v15 was also now in full swing. 
 
* December 1997 
Final development and testing of PrimeNet 3.0 and Prime95 v15 wrapped up. 
 
* January 1998 
On 3 January 1998, PrimeNet 3.0 replaced the 2.8 server on the Internet, v15 released, 
and GIMPS officially converted to using Entropia.com, Inc.'s PrimeNet.  Of course, we 
got lucky; prime 23021377 � 1 was found less than a month later! 
 
* February-June 1998 
Support for the public version of PrimeNet 2.6 for v14 continued on the web site until 
more than 99.5% of GIMPS used PrimeNet in June 1998.  Entropia.com continued 
promoting v15 for use on the Internet PrimeNet 3.0 server. 
 
* July-September 1998 
Entropia.com software is redesigned for scalability and general-purpose use.  Base 
software system layers are rewritten. 
 
* October-November 1998 
PrimeNet 4.0 is redesigned and entirely rewritten to use the new Entropia.com 
architecture. 
 
* December 1998 - January 1999 
PrimeNet 4.0 is tested; final components are written. 
 
* February 1999 
PrimeNet 3.0, a P166 server (which by now suffered under the load of over 15,000 
computers) is upgraded the 3.0 system to the faster, stronger dual P350 and 4.0 system 
architecture we have today.  There was a lot of cleanup work to complete the transition to 
4.0, but by the end of the month, things were running fairly smoothly. 
 
* March-April 1999 
EFF.org preparations are completed.  EFF announces the Cooperative Computing 
Awards. 
 
* May 1999 
Entropia.com hires KQED for two brief promotional radio ads.  A few thousand new 
GIMPS users sign up. 
 
* June 1999 
Prime 26972593 � 1 is discovered. 
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