Version 1.0 - September 22, 2015

<functional>: What's New,
And Proper Usage

Stephan T. Lavavej ("Steh-fin Lah-wah-wade")

Senior Developer - Visual C++ Libraries
stl@microsoft.com

Getting Started

- Please hold your questions until the end
- Write down the slide numbers

- Everything here is Standard
- Unless otherwise specified

- Almost everything here is available in VS 2015
- Rewrote <functional> for Standard conformance
- Minor issues will be listed at the end

Lambdas (C++11)

C++14: init-captures, generic lambdas

- 4
Example

vector<string> v{ "hydrogen", "helium",
"lithium"”, "beryllium", "boron", "carbon",
"nitrogen"”, "oxygen", "fluorine", "neon" };

stable sort(v.begin(), v.end(),
[](const auto& 1, const auto& r) {
return l.size() < r.size(); });

for (const auto& e : v) {
cout << e << endl;

}

- 5
Lambdas Aren't Magical

- A lambda expression:

- Defines a class
- With operator()(Args) and maybe data members

- Constructs an object

- Lambda syntax is convenient
- Handwritten function objects are verbose

- Remember:
- Lambdas are a Core Language feature
- std::function is a Standard Library feature
- Lambdas aren't std: :functions

-6
Lambdas Aren't Magical, Really

- Stateless lambdas: convertible to function pointers
- Handwritten function objects can do that too
- It's just operator FunctionPointer()

- Remember:
- A lambda defines a class and constructs an object
- Lambdas aren't functions
- Lambdas aren't function pointers

- Never refer to lambdas as "anonymous functions”
- Or I will make this face >:-[/]

invoke() (C++17)

8
Terminology: Function Objects

- Usable like functions: func(args)
- Function pointers
- Even in C, fp(args) means (*fp)(args), thanks to DMR
- Classes with operator() (Args)
- Including lambdas

- Classes with conversions to function pointers
- Obscure!

- References to functions are similarly usable
- Technically, reference types aren't object types

- ___________________________________°
Terminology: Callable Objects

- Callable in a generalized sense
- Function objects: func(args)
- Pointers to member functions (PMFs): (obj.*pmf) (args)
- Pointers to member data (PMDs): obj.*pmd

- The Core Language wants different syntax (hiss!)
- pmf(obj, args) could be permitted, but isn't

- The Standard Library wants uniform syntax (purr!)
- INVOKE () was imaginary in TR1 and C++11/14
- invoke() is available in C++17

10
invoke(callable, args...)

- Function objects
- invoke(func, args...) is func(args...)

- PMFs
- invoke(pmf, obj, rest...) is (obj.*pmf)(rest...)
- invoke(pmf, ptr, rest...) is ((*ptr).*pmf)(rest...)
- PMDs
- invoke(pmd, obj) is obj.*pmd
- invoke(pmd, ptr) is (*ptr).*pmd
- Base PMFs/PMDs can be invoked on Derived things
- invoke() handles both raw pointers and smart pointers

Example

template <typename Range, typename Callable>
void transform print(const Range& r, Callable c) {

for (const auto& e : r) {
cout << invoke(c, e) << endl;

}
}
vector<pair<int, int>> v{{4, 40}, {5, 50}, {6, 60}};

transform _print(v,
[](const auto& p) { return p.first * p.first; });

transform_print(v,
&pair<int, int>::second);

12
Things That Use invoke()

- <functional> - <future>
- std: :function - packaged task
- reference_wrapper - async()
» bind() - <mutex>
- mem_fn() - call once()
- <type_traits> - <thread>

- result_of - std: :thread

13
Recommendations

- In non-generic code, invoke() isn't very useful
- Unless you really hate PMF syntax

- In generic code, invoke() can simplify things
- Take/store arbitrary callable objects and arguments
- Give them to invoke(), let it decide what to do

- Don't special-case PMFs/PMDs
- Inspecting PMF types is a headache
- Implementing invoke() behavior is extremely difficult

result of (C++11)

14

C++14: SFINAE, result of t

15
result of: Type Trait For invoke()

- C++11 <type traits> (was TR1 <functional>)
- result of t<Callable> is incorrect

- result of t<Callable(Args...)> is:

- decltype(invoke(declval<Callable>(),
declval<Args>()...))

- declval() is declared but never defined:

- template <typename T> add rvalue_ reference t<T>
declval() noexcept;

- In C++14, the ::type SFINAEs away

- 16
Example

template <typename T, typename Callable>
auto transform_sort(const vector<T>& v, Callable c) {
vector<decay t<result of t<Callable&(const T&)>>> ret;
for (const T& t : v) { ret.push_back(invoke(c, t)); }
sort(ret.begin(), ret.end());
return ret;
}
const vector<string> v{ "hydrogen", "helium", "etc." };
auto lambda = [](const string& s) { return s.size(); };
for (const auto& e : transform _sort(v, lambda)) {
cout << e << endl;

¥

result of Is Tricky

- It answers "what's the type of this invocation?"
- But it uses different syntax than the real invocation

- cv-qualifiers and value categories can matter
- declval<Callable/Args>() must match real callable/args
- Especially when C++11 ref-qualifiers are involved

- The real invocation might do extra work
- bind() extensively manipulates its arguments
- async() decays its arguments

- result_of is TR1-era tech, predating decltype

Recommendations

- Avoid using result of
- If you must use it, be careful
- Audit existing usage for bugs, I bet you'll find some
- Use decltype(STUFF), decltype(auto), or auto
- Which generic programmers already need to understand
- In general, avoid computing the same thing
through different mechanisms

- If repetition is necessary, prefer exactly repeating text
- decltype(STUFF) matching return STUFF; is easy to see

mem fn() (C++11)

Example

struct Element {
bool is metallic() const;

}s

size t count _metals(const vector<Element>& v) {
return count _if(v.begin(), v.end(),
mem_fn(&Element::is_metallic));

N S
mem fn() Isn't Fun, Really

- Good: Usually terse
- Bad: Resistant to optimization

- Ugly: Won't compile in certain situations
- Overloaded member functions (need static_cast)

- Templated member functions (use static_cast)
- Avoid explicit template arguments, Don't Help The Compiler
- Default arguments (no workaround)

- Unnecessary with anything powered by invoke()

22
Recommendations

- Avoid using mem_fn()
- Algorithm inner loops often affect performance
- As code evolves, mem_fn() is fragile
- Auditing existing usage is low priority, though
- Use lambdas, especially generic lambdas
- They're slightly more verbose
- But they optimize away
- And they always compile, like other member function calls

Transparent Operator
Functors (C++14)

24
Example

vector<int> ints{ 6, 3, 10, 5, 16, 8, 4, 2, 1 };
vector<string> strs{
"0'Neill", "Carter", "Jackson", "Teal'c" };

sort(ints.begin(), ints.end(), greater<>());
sort(strs.begin(), strs.end(), greater<>());

for (const auto& e : ints) { cout << e << endl; }
for (const auto& e : strs) { cout << e << endl; }

25
Would You Like To Know More?

- Transparent Operator Functors
- "Don't Help The Compiler”
- GoingNative 2013, slides 37-48
- Gained constexpr before C++14 shipped

- Heterogeneous Associative Lookup

- "STL Features And Implementation Techniques"
- CppCon 2014, slides 33-40

26
Recommendations

- Use greater<> etc. by default
- Except when you need implicit conversions (very rare)

- Advantages:
- Avoids truncation/signedness bugs
- Avoids unnecessary temporaries
- Avoids unnecessary copies
- Less verbose

- Unlike mem_+n(), library machinery is OK here
- Operators are known in advance, perfectly special-cased

pind() (C++11)

Example

const vector<int> v{ 1, 4, 9, 16, 25, 36, 49,
64, 81, 100, 121, 144 },;

cout << count _if(v.begin(), v.end(),
bind(less<>(), 1, 50)) << endl; // 7

cout << count_if(v.begin(), v.end(),
bind(less<>(), 50, 1)) << endl; // 5

- 29
How bind() Works

-auto b = bind(callable, bound_args...);
- Later: b(unbound_args...);

- callable and bound_args are copied or moved

- Then they're passed as lvalues to invoke()
- S0 b can be called repeatedly

- With b's constness, via const-overloaded operator()

- Some bound arguments are special:
- Placeholders: 1 perfectly forwards first unbound arg
- reference_wrapper<T>: unwrapped via get() to T&
- Nested bind(): called with perfectly fwded unbound args

- Unused unbound arguments are ignored

30
bind() Problems

- Same performance/compiler issues as mem_fn()
- With function pointers in addition to PMFs/PMDs

- Misuse emits ultra-disgusting compiler errors
- Syntax isn't normal C++, especially nested bind()
- No short-circuiting for logical and/logical or

- Surprising behavior: bound args passed as lvalues
- Affects unique ptr, etc.

- Surprising behavior: immediate vs. delayed calls
- Placeholders and nested bind() can move twice

Recommendations

- Avoid using bind()
- Use lambdas, especially generic lambdas
- bind(): good idea in 2005, bad idea in 2015

- In C++, we usually prefer Library solutions to Core

- But the Library is terrible at building up function objects
- Lambdas were added to the Core Language for a reason
- STL maintainers rarely recommend avoiding the STL

- bind()'s terseness just isn't worth the price

reference wrapper
(C++11)

32

C++17: trivially copyable

33
Class Definition

template <typename T> class reference wrapper {
public:
typedef T type;
reference_wrapper(T&) noexcept;
reference_wrapper(T&&) = delete;
operator T&() const noexcept;
T& get() const noexcept;
template <typename... Args>
result of t<T&(Args&&...)>
operator() (Args&&...) const;

}s

34
Example

vector<int> v(8);

const auto b = v.begin(); const auto e = v.end();
typedef uniform _int distribution<int> Dist;

auto d20 = [urng = mt19937(1729), dist = Dist(

1, 20)]() mutable { return dist(urng); };
generate(b, e, d20); // 2 11 8 18 10 11 16 2
generate(b, e, d20); // 2 11 8 18 10 11 16 2
generate(b, e, ref(d20)); // 2 11 8 18 10 11 16 2
generate(b, e, ref(d20)); // 18 4 12 10 8 13 14 10

35
Recommendations

- Almost all algorithms take function objects by value

- And are allowed to copy them
- Use ref() to pass function objects by reference

- Avoid explicit template arguments, Don't Help The Compiler
- reference_wrapper is useful elsewhere

- Like std: :thread's constructor

- But first, learn why it uses DECAY COPY()

- Be aware of the 3 functions that unwrap
- make pair(), make_tuple(), and bind()
- make_tuple(x, ref(y), cref(z)) is tuple<X, Y&, const Z&>

c1

Removed Old <functional>
Stuff (C++17)

Erased... From EXxistence

- Deprecated in C++11, removed in C++17

- unary_function/binary_ function

- Provided result_type, etc.
- ptr_fun()

- Wrapped function pointers with result_type, etc.
- mem_fun()/mem_fun_ref()

- Strictly superseded by mem_fn()

- bindlst()/bind2nd()
- Strictly superseded by bind()

38
Recommendations

- Never use the old <functional> stuff

- Remove any existing usage

- C++4+98/03 algorithms/containers never needed
unary_function/binary_ function/ptr fun()

- VS 2015: /D _HAS AUTO PTR_ETC=0
- Also controls auto_ptr and random_shuffle()

39

std: :function (C++11)

C++14: SFINAE
C++17: Converts non-void to void

40
Example

int sum_squares(int x, int y) {

return x * x +y * y; }
vector<function<int (int, int)>> v;
v.emplace back(plus<>());
v.emplace back(multiplies<>());
v.emplace back(&sum_squares);
for (int 1 = 10; 1 <= 1000; i *= 10) {

v.emplace back([i](int x, int y) {

return i * x +y; }); }

for (const auto& f : v) { cout << f(4, 5) << endl; }

T S
How std: :function Works

- function<Ret (Args)> is a wrapper
- Stores a callable object of arbitrary type
- Templated on call signature, not callable object type
- Type erasure, powered by virtual functions (or equivalent)

- Useful when code can't be templated
- Separately compiled code
- Virtual functions
- Container elements

4
CopyConstructible Required

- The STL usually delays requirements
- 1ist<T> doesn't require T to have operator<()
- 1list<T>::sort() requires T to have operator<()
- std: :function is special, due to type erasure
- function(F) requires F to be CopyConstructible
- Even though it stores move(f)
- Even if you never copy std: :function

- Can't store movable-only function objects
- Design limitation; alternatives are being investigated

43
Small Functor Optimization

- Arbitrary callable objects can be arbitrarily large
- Eventually, dynamic memory allocation is necessary

- Small callable objects can be stored locally
- Guaranteed for function pointers and reference_wrapper
- Otherwise, "small" is the implementer's decision

- is _nothrow_move constructible needed for SFO
- Because function: :swap() must be noexcept

Magic Numbers

Toolset VS 2015 |VS 2015 libc++ libstdc++
x86 x64 3.7.0 x64 | 5.2.0 x64

std: :function
SFO Max 32 48 24 16
std::string 24-28 32-40 24 32

45
Ambiguous C++11, Valid C++14

void meow(const function<int (int)>& f) {
cout << f(3) << endl; }

void meow(const function<int (int, int)>& g) {
cout << g(4, 5) << endl; }

meow([](int n) { return n * 11; });

meow([](int x, int y) { return x * 10 + y; });

- function<Ret (Args)>(F) is now constrained
- F must be Callable as Ret (Args)

46
Invalid C++14, Valid C++17

int x = 1729;

function<void (int&)> f(
[](int& r) { return ++r; });

f(x);

cout << X << endl;

- Non-void can't be implicitly converted to void
- According to Core - but the Library makes its own rules!

- Also applies to packaged task, obscure bind<R>()

Unresolved Library Issues

- std: :function's operator() is const
- Can store function objects with non-const operator()
- Violates the STL's const/multithreading conventions
- This compiles, but really shouldn't:
string meow(int x) { return to_string(x); }
function<const string& (int)> hiss(&meow);

- VS warns: returning address of local variable or temporary
- I think I can fix this in the Standard, but it's not trivial

48
Recommendations

- std: :function is awesome!

- But use it only when necessary
- When possible, use templates and auto
- std: :function inherently has nonzero costs

- Time: Type erasure prevents inlining
- Space: SFO buffer and type erasure consume bytes
- Codegen: Emits code whether you use it or not

- Avoid unnecessary copies, moves, temporaries

More Info

More Info

- Almost everything here is available in VS 2015
- Not yet implemented: C++14 result of/function SFINAE
- Bugs: async() uses bind(), packaged task uses function
- My mem_fn() was sneaky in RTM, fixed in Update 1

- C++17 Working Paper

- http://www.open-
std.org/jtcl/sc22/wg2l1l/docs/papers/2015/n4527.pdf

Questions?

51

stl@microsoft.com

